City Hospital - Campus Development

William K. Tang

The Pennsylvania State University

Architectural Engineering Mechanical Option

Senior Thesis Presentation 2008

Thesis Advisor: James D. Freihaut, Ph.D.

Presentation Outline

Project Background

Existing Mechanical System

Alternate Mechanical System

Acoustic Breadth

Future Considerations

Life Cycle Cost

Conclusion

- Southeast Pennsylvania
- 30-year 3 million SFCampus Development Plan
 - 1 million SF of research space
 - 1 million SF of office space
 - 1 million SF of support service & parking space

Phase 1

Completed in March 2008

Phase 1 - Vivarium

- 176,000 SF on 3 levels below grade
- contains research space& animal suite

Phase 1 - Central Utility Plant

- 59,500 SF on 3 levels below grade
- contains MEP
 infrastructures to support
 City Hospital campus

Phase 2 - Research Lab

- construction began July2008, aboveP1 Vivarium
- 250,000 SF on 7 floors above ground
- contains laboratory & office spaces

Presentation Outline

Project Background

Existing Mechanical System

Alternate Mechanical System

Acoustic Breadth

Future Considerations

Life Cycle Cost

Conclusion

Air System

Phase 1 - vivarium

- (6) 100,000 cfm 100% OA AHU
- (3) 120,000 cfm EAHU w/ heat recovery

Phase 2 - laboratory

- (1) 100,000 cfm 100% OA AHU
- (4) 50,000 cfm 100% OA AHU
- (3) 100,000 cfm EAHU w/ heat recovery

Phase 2 - office

(4) 50,000 cfm AHU w/recirculation

Boiler Plant

(4) 32 MMBtuh dual fuel steam boilers

Boiler Plant

(4) 32 MMBtuh dual fuel steam boilers

Chiller Plant

- (1) 2,000 ton electric centrifugal
- (1) 2,000 ton steam turbine

Energy Saving Designs

- VAV fume hoods
- VSD fans & pumps
- Boiler stack economizer
- Glycol loop sensible heat recovery

Annual Energy Cost

~ **\$4.35** million (Phase 1&2)

~ \$20.5 million (completed campus)

Presentation Outline

Project Background

Existing Mechanical System

Alternate Mechanical System

Acoustic Breadth

Future Considerations

Life Cycle Cost

Conclusion

Design Objectives

- Reduce energy usage & cost
- Optimize economic viability
- Maintain occupants' health & thermal comfort
- Maintain system's flexibility & ability to expand
- Lessen environmental impacts

Alt. 2: Cogeneration (CHP)

Most practical when

- A central plant already in place
- A need for process heat
- Spark-Gap > \$12/MMBtuh

CHP Components

3 Main Parts

- Prime mover
- Electric generator
- Heat recovery steam generator (HRSG)

Prime Mover Selection

Prime Mover Summary					
Technology	Gas Turbine	Fuel Cell			
Power Efficiency	22 – 36%	30 – 63%			
Overall Efficiency	70 – 75%	65 – 80%			
Typical Capacity (MW)	1-500	0.01 – 2			
Typical Power to Heat Ratio	0.5 – 2	1-2			
Part Load	Poor	Good			
CHP Installed Cost (\$/kW)	800 – 1,800	2,700 – 5,300			
O&M Cost (\$/kWh)	0.003 – 0.0096	0.005 - 0.04			
Hours to Overhauls	30,000 – 50,000	10,000 – 40,000			
Start-up Time	10 min – 1 hr	3 hr — 2 days			
Fuels	Natural gas	Hydrogen			
	Bio gas	Bio gas			
	Propane	Propane			
	Fuel oil	Methanol			
Noise	Moderate	Low			

Generator Selection

Presentation Outline

Project Background

Existing Mechanical System

Alternate Mechanical System

Acoustic Breadth

Future Considerations

Life Cycle Cost

Conclusion

Sound Transmission

Transmission Lost Calculation								
	Hz	125	250	500	1k	2k	4k	Area
1−¾″ Steel Door	TL	23	28	36	41	39	44	42
8" CMU wall (painted)	TL	38	38	45	50	52	55	990
Composite Wall	TL_ov	32	dBA					

Noise Reduction

Noise Reduction Calculation								
	Hz	125	250	500	1k	2k	4k	Area
8" CMU wall (painted)	α	0.1	0.05	0.06	0.07	0.09	0.08	955
	Α	95	48	57	67	86	76	
8′ Concrete Floor	α	0.01	0.01	0.01	0.02	0.02	0.02	680
	Α	7 L2	2 < NC I			14	14	
Openings	α	1.	(55 -	- 58 dB	A)	1.0	1.0	180
	Α	180	180	180	180	180	180	
Composite Wall	NR	34	dBA					
L2		47	dBA					

Presentation Outline

Project Background

Existing Mechanical System

Alternate Mechanical System

Acoustic Breadth

Future Considerations

Life Cycle Cost

Conclusion

- 30-year 3 million SF campus development plan
- Alternate design must perform well for P1&2, and the completed campus

	White Heat Biomedical Research Center	Fred Hutchinson Cancer Research Center	Louis Stoke Laboratories, NIH	Research Laboratories Univ. of California	City Hospital Phase 1&2
Location	Atlanta, GA	Seattle, WA	Bethesda, MD	CA	S.E. PA
Elec. Intensity (kWh/ft2-yr)	63.3	77.0	67.5	79	56.8
Steam Intensity (kBtu/ft-yr)	210	-	-	559	372

Construction Milestones

Estimated Energy Usage

Steam & electricity Demand						
	Phase 1&2	West Tower	Completed Campus			
Square Footage	420,000	1,150,000	2,000,000			
Peak Steam demand (MMBtu/hr)	31.5	86.0	149.5			
Natural Gas Cons. (million therm/yr)	1.25	3.40	5.95			
Peak Elec. Demand (kW)	4,800	13,160	22,880			
Base Elec. Demand (kW)	1,350	3,685	6,410			
Electricity Cons (MWh/yr)	28,650	78,440	136,415			

CHP Equipment Staging

Staging Scenario 1							
P1&2 West Towers Completed Campu							
1.2 MW CHP	1	2	2				
3.5 MW CHP	-	-	1				

Staging Scenario 2							
P1&2 West Towers Completed Campus							
1.2 MW CHP	-	-	-				
3.5 MW CHP	-	1	2				

Life Cycle Cost (LCC) Analysis

Analysis Perimeters:

- 20-year period
- 3% discount rate

ltem	Installed Cost	O&M Cost
800 bhp Boiler	\$ 380,000	\$ 3,560
2,000 bhp Boiler	\$ 1,122,000	\$ 9,100
1.2 MW CHP	\$ 2,067,000	\$ 94,000
3.5 MW CHP	\$ 4,246,000	\$ 209,500

- NIST fuel cost escalation rate
- capital cost, energy cost, O&M cost
- possible effects of deregulation

Possible Effects of Deregulation

- Baltimore, MD consumers experience 75% increase in electricity
- Pennsylvania full deregulation of electric utility on Dec. 30, 2010

4 Possible Scenarios of Deregulation

- (1) Normal NIST fuel price escalation
- (2) 75% electricity cost increase by 2011, natural gas remain normal
- (3) 15% electricity cost increase by 2011, natural gas remain normal
- (4) 15% natural gas cost increase by 2009, electricity remain normal

Discounted Payback Period

Staging Scenario 1 Annual Savings & Pay Back Period ('07 Dollars)						
	P 1&2		West Towers		Completed Campus	
	Savings (\$ Mil)	Payback Period	Savings (\$ Mil)	Payback Period	Savings (\$ Mil)	Payback Period
Normal NIST Escalation	0.01	155	1.2	0.8	2.9	1.6
Elec. Increase 75% ('11)	0.34	6.1	2.3	0.4	5.4	0.8
Elec. Increase 15% ('11)	0.09	23	1.4	0.6	4.2	1.1
NG Increase 15% ('09)	-0.04	-56	1.1	0.8	2.3	2.0

Discounted Payback Period

Staging Scenario 1 Annual Savings & Pay Back Period ('07 Dollars)							
	P 1&2		West Towers		Complete	Completed Campus	
	Savings (\$ Mil)	Payback Period	Savings (\$ Mil)	Payback Period	Savings (\$ Mil)	Payback Period	
Normal NIST Escalation	-	-	1.7	1.9	3.4	1.3	
Elec. Increase 75% (`11)	-	-	3.4	0.9	6.8	0.7	
Elec. Increase 15% ('11)	-	<u>-</u>	2.07	1.5	4.2	1.1	
NG Increase 15% ('09)	-	<u>-</u>	1.6	2.0	3.2	1.4	

Presentation Outline

Project Background

Existing Mechanical System

Alternate Mechanical System

Acoustic Breadth

Future Considerations

Life Cycle Cost

Conclusion

Alternate System Savings						
	P 1&2	West Towers	Completed Campus			
Energy Cost (\$ Mil)	1.0	2.0	5.8	17 – 27%		
CO2 Reduced (million ton/yr)	6.1	12.3	26.9	60 – 82%		
NOx Reduced (ton/yr)	2,570	5 ,1 39	11,276	60 – 82%		
SO2 Reduced (ton/yr)	128	255	610	54 – 74%		
Car Removed (million)	0.27	0.54	1.18			

• population of Philadelphia, PA: 1.5 million (2005)

- CHP for Phase 1&2 is not economically viable
- CHP w/ larger capacity (Scenario 2) should be install at later construction phases

Acknowledgements

Thesis Advisor
James Freihaut

AE Faculty

William Bahnfleth Kenneth Davidson Theodore Dannerth Moses Ling

Practitioner

AE Thesis Mentors

James Knight Bucknell University Utility
& Cogen. Assoc. Director

Wayne Macafee PSU Boiler Plant Engineer

Paul Moser PSU Steam Plant Supervisor

Sponsors

Turner Construction Co. BR+A Consulting Engineers

AE Students

Brian Ault Monjia Belizare Maxwell Chien Landon Roberts

<u>Family</u>

Nikky & Zeus Parents

Questions & Comments

Alt. 1: All Elec. Chiller Plant

electric centrifugal

~ 0.598 kW/ton or 2,041 btuh/ton

steam turbine

~ 11.2 pph steam @ 340°F, 120 psig or 13,365 btuh/ton

Existing System Energy Cons.

All Elec. Chiller Energy Cons.

Alt. 1: All Fig. niller Plant

An all electric centrifugal chiller plant

- 84% more efficient
- save \$274,000 annually in energy cost (Phase 1&2)
- lack energy source flexibility of existing configuration which is essential for City Hospital

Future Considerations

Acoustic Breadth

Basis for Extrapolation						
Peak Elec.	1	1	W/ft²			
Base Elec.	3	}	W/ft²			
Peak Steam	7	5	btuh/ft²			
	Existing Design Alt. Design					
Elec. Consumption	5	kWh/ft² - yr				
NG Consumption	3.0	3.5 – 4.0	therm/ft² - yr			
Cost of Elec.	6.3	2.4 – 4.1	\$/ft²			
Cost of NG	4.08	5.08 – 5.40	\$/ft²			
CO ₂	17.9 3.2 – 7.2		ton/ft² - yr			
Nox	15.0 2.7-6.1		lbm/ft² - yr			
SO ₂	0.7	0.1-0.4	lbm/ft² - yr			

	Scenario 1			Scenario 2		
Construction Milestones	Phace 18,2	West Tower	Completed Campus	Phase 1&2	West Tower	Completed Campus
1.2 MW CHP	1	2	2			
3.5 MW CHP			1		1	2
HRSG	1	2	3		1	2
800 BHP Boiler	1	2	1	1	2	1
2000 BHP Boiler			1			1
Backup 800 BHP Boiler		1	2	1	1	2
Total MW	1.2	2.4	5.9	0.0	3.5	7.0
CHP MMBtuh	9.6	19.2	42.1	0.0	22.9	45.8
Boiler MMBtuh	32.3	64.5	114.7	32.3	64.5	114.7
Available MMBtuh	/.1 N	83.7	156.8	32.3	87.4	160.5
Backup Boiler MMBtuh	ררר	32.3	64.5	32.3	32.3	64.5
Boiler MMBtuh	64.5	96.8	179.3	64.5	96.8	179.3
Total MMBtuh	74.1	116.0	378.2	64.5	119.7	385.6
Number of Boilers	7	3	4	2	3	4
Number of Equipments	/	7	10	2	5	8